
Durchbruch in der Röntgen-Nanospektroskopie
HZB-Forscher ermöglichen Röntgenspektroskopie mit räumlicher Auflösung im Nanometerbereich
Berlin, 7. Dezember 2011 — Forscher des Helmholtz-Zentrum Berlin (HZB) haben ein neues Mikroskop entwickelt, das röntgenspektroskopische Untersuchungen mit hoher räumlicher Auflösung ermöglicht. Das Mikroskop an der Synchrotronquelle BESSY II des HZB nutzt dafür brillante Röntgenstrahlung.
Mit den konventionellen Röntgenspektroskopie-Methoden konnten bisher keine einzelnen Nanoteilchen studiert werden. Ein wesentliches Ziel bei der Untersuchung von Nanostrukturen oder Nanopartikeln ist jedoch die Bestimmung ihrer Größe und ihrer elektronischen Eigenschaften.
Schematische Darstellung der mit Röntgenlicht verschiedener Photonenenergien durch einen Kapillar-Kondensor beleuchteten zu untersuchenden Titanoxid-Stäbchen. Ein hochauflösendes Objektiv – hier nicht dargestellt – bildet dann diese Objekte ab. Quelle: HZB
Um die notwendige Ortsauflösung im Nanometerbereich zu erhalten, müssen die Strukturen mit Röntgenstrahlung von hoher spektraler Auflösung beleuchtet und mit einem Röntgenobjektiv auf einem Detektor abgebildet werden. Das neue Verfahren haben Dr. Peter Guttmann und das Mikroskopie-Team von PD Dr. Gerd Schneider am HZB-Institut für Weiche Materie und Funktionale Materialien jetzt in der Zeitschrift Nature Photonics (DOI: 10.1038/NPHOTON.20111268) publiziert.
Das große Interesse an den elektronischen Eigenschaften von Nano-Strukturen, die in verschiedenster Weise funktionalisiert werden können, ist in deren möglicher Anwendbarkeit als aktives Material mit großer Oberfläche in kleinem Volumen begründet. Ihr Einsatz ist beispielsweise in Lithium-Ionen-Batterien, in der Photokatalyse zur Herstellung von Wasserstoff als Energieträger oder in Solarzellen denkbar. Mit dem HZB-Mikroskop steht ein neues und attraktives Werkzeug für die Materialwissenschaften und insbesondere auch die Energieforschung zur Verfügung.
Mit der Methode ist es möglich, Nanopartikel in Objektfeldern von bis zu 20 x 20 µm2 gleichzeitig mit einer CCD-Kamera aufzunehmen. In den Objektfeldern finden sich sehr viele der zu untersuchenden Strukturen. Die Forscher erhalten räumlich hochaufgelöste Bilddatensätze mit spektraler Information, indem sie Bilddaten über einen gewählten Energiebereich mit sehr kleinen Energieschritten aufnehmen. Auf diese Weise kann von jedem einzelnen Partikel bzw. von Teilbereichen der Nanostruktur ein Spektrum gewonnen werden. Diese so genannten NEXAFS-Spektren lassen eine Aussage über die elektronische Struktur zu, also letztlich die Anordnung der einzelnen Atome in dem Nano-Partikel. Anders als bei Raster-Röntgenmikroskopie, bei der mit jeder Aufnahme lediglich das Spektrum eines einzelnen Nanopartikels vermessen wird, enthält ein Datensatz bei der neuen Methode bereits statistische Aussagekraft – in ihm sind die Spektren einer großen Zahl von Partikeln enthalten.
„Ein wichtiger Vorteil unseres Mikroskops ist der Zeitgewinn bei gleichzeitig verbesserter spektraler Auflösung von 10.000“, sagt Dr. Peter Guttmann, Physiker am HZB: „Gegenüber den bisher dafür benutzten Raster-Röntgenmikroskopen erlaubt unser Mikroskop eine um den Faktor 100 schnellere Aufnahme von Spektren in großen Objektfeldern. Mit Hilfe des HZB-Elektronenstrahlschreibers können weiterentwickelte Optiken hergestellt werden, um unsere Methode von derzeit 25 nm auf eine Ortsauflösung von 10 nm zu verbessern“.
Mit der hohen räumlichen und spektralen Auflösung, die das Mikroskop erreicht, konnten die Wissenschaftler in Zusammenarbeit mit Co-Autoren aus Belgien, Frankreich und Slowenien die Struktur von speziell aufgebauten Nano-Stäbchen aus Titandioxid untersuchen. Die jetzt vorgestellten Untersuchungen an Nano-Stäbchen erfolgten in einer europäischen Zusammenarbeit im Rahmen der COST action MP0901(NanoTP).
Das Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) betreibt und entwickelt Großgeräte für die Forschung mit Photonen (Synchrotronstrahlung) und Neutronen mit international konkurrenzfähigen oder sogar einmaligen Experimentiermöglichkeiten. Diese Experimentiermöglichkeiten werden jährlich von mehr als 2500 Gästen aus Universitäten und außeruniversitären Forschungseinrichtungen weltweit genutzt. Das Helmholtz-Zentrum Berlin betreibt Materialforschung zu solchen Themen, die besondere Anforderungen an die Großgeräte stellen. Forschungsthemen sind Materialforschung für die Energietechnologien, Magnetische Materialien und Funktionale Materialien. Im Schwerpunkt Solarenergieforschung steht die Entwicklung von Dünnschichtsolarzellen im Vordergrund, aber auch chemische Treibstoffe aus Sonnenlicht sind ein wichtiger Forschungsgegenstand. Am HZB arbeiten rund 1100 Mitarbeiter/innen, davon etwa 800 auf dem Campus Lise-Meitner in Wannsee und 300 auf dem Campus Wilhelm-Conrad-Röntgen in Adlershof.
Das HZB ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V., der größten Wissenschaftsorganisation Deutschlands.
Weitere Informationen:
Dr. Peter Guttmann
Institut Weiche Materie und Funktionale Materialien (F-I2)
Mikroskopie Gruppe
Tel.: +49 (0)30-8062-14749
peter.guttmann@helmholtz-berlin.de
PD Dr. Gerd Schneider
Institut Weiche Materie und Funktionale Materialien (F-I2)
Tel.: +49 (0)30-8062- 13131
gerd.schneider@helmholtz-berlin.de
Related Posts










Neue Internetseite von Olympus Life Science Mikroskopie und QR-Code-System ermöglichen eine intuitive, anwendungsorientierte Navigation










Products
kontakt
Mikroskopie News Portal
Am Ginster 6
21409 Oerzen, Germany
Email:
info@mikro-news.de